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Abstract

In this paper, we present two new numerical algorithms for updating the equations of motion for a viscoelastic fluid

that can be described by the finite extensible nonlinear elastic polymer model with the closure proposed by Peterlin (so

called FENE-P model) in a transient calculation. In particular, our algorithms address two difficulties found in earlier

formulations. First, the polymer extension, represented by the trace of the conformation tensor, can numerically exceed

the finite extensible length causing the restoring spring force to change sign and the calculation to rapidly diverge. In

our formulations, we have redefined the conformation tensor so that this possibility no longer exists. Secondly, the

conformation tensor must remain symmetric and positive definite at all times for the calculation to remain stable. The

accumulation of numerical errors can cause loss of this property, leading to the growth of Hadamard instabilities [J.

Non-Newtonian Fluid Mech. 60 (1995) 53]. We present two matrix decompositions that enable us to construct the

conformational tensor in a manner that ensures positive definiteness. Numerical tests of the new algorithms show

significant departures from other approaches that rely on filtering to remove the instabilities.

� 2003 Elsevier Science B.V. All rights reserved.

PACS: 65N12; 76A10; 76F05
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1. Introduction

Numerical simulation of viscoelastic flows of dilute polymer solutions has benefited from a new class of

constitutive models known as finite extensible nonlinear elastic (FENE) models. These models are based on

a molecular, coarse-grained treatment of the polymer molecule as a collection of beads and springs. Beads

represent blocks of monomer that are small enough that their rotational motion is highly correlated—the

characteristic length being defined as a Kuhn length [1]. The springs account for the tendency of the
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polymer chain to assume configurations that leave the molecule in a ball. The spring should be viewed as a

probabilistic (or entropic) spring that restores a stretched molecule into configurations that are more

probable. Traditional Hookean springs lead to a class of models known as Oldroyd B fluids. This ap-

proximation is reasonable for weakly stretched polymer molecules, but is unphysical for polymer molecules

undergoing large strains.

In contrast, FENE models have been shown to reproduce many properties found experimentally [2,3].

Moreover, these models have a stronger statistical mechanical foundation that enables physical properties

in the model to be more easily estimated for a specific polymer—solvent combination [4]. However, the
FENE model is still not a closed constitutive model that can be embedded into a fluid mechanics code.

Closure for the two-bead dumbbell has been postulated by Peterlin [5], resulting in a model that is generally

referred to as the FENE-P model. The FENE-P model requires solution of an orientation tensor,

Cij � hrirji, which describes the average orientation of the polymer chains at each point in the fluid, where ri
is the separation vector between the two beads. The polymer contribution to the stress tensor is then related

nonlinearly to the orientation tensor.

Early attempts to embed the FENE-P model in a direct numerical simulation of turbulent flow for the

purpose of studying drag reduction were plagued by numerical difficulties [6]. Sureshkumar and Beris [7]
traced the problem to the numerical update of the conformation tensor and introduced an artifical stress

diffusivity into the equation to damp the growth of Hadamard instabilities. This lead to a series of suc-

cessful numerical simulations of turbulent drag reduction by Beris and coworkers [8–11] and others [12–15].

Despite the success of the approach, there remains the question of how much the artificial stress diffusivity

is masking or otherwise modifying the physics of the fluctuating polymer stresses, particularly at high

wavenumbers, where presumably the damping will be strongest.

In light of this earlier work, we can identify three distinct issues associated with simulating a turbulent

flow field with the FENE-P model. First, the finite extensibility of the polymer manifests in the model as a
limit for the trace of the conformation tensor. Unfortunately, numerical errors, particularly in the vicinity

of a strongly extensional flow, can lead to predictions for the polymer extension that exceed the bound,

causing the restoring force to change sign and the simulation to rapidly diverge. This can be partially al-

leviated by solving the equations implicitly; however, iterations that encounter this problem will dramat-

ically slow the rate of convergence. The second problem is associated with the eigenvalues of Cij, which

should remain positive. Negative eigenvalues are equivalent to locally negative viscosities, which cause the

unbounded growth of instabilities in the flow. The third issue is not, strictly speaking, a numerical problem,

but is associated with the current formulation of the FENE-P model. Because the equation for the con-
formation tensor contains no diffusion term (or other dissipation mechanism), turbulence (or any �mixing�
flow [16] for that matter) will generate sharp gradients (shocks) in the conformation tensor. This causes the

stress divergence to increase, possibly without bound, with increasing grid resolution. Physically we expect

some molecular mechanism to truncate this process; however, the nature of that truncation is not clear;

moreover, the argument for the molecular cutoff should come from modeling not numerical considerations

(at least initially).

We propose two entirely new formulations based on decompositions of the conformation tensor that

address the numerical problems discussed above. The approach is similar to the one used by [17] to
evaluate integrals of the conformation tensor; however, in this instance we use the decomposition to

guarantee positivity of all of the eigenvalues of the conformation tensor independent of the strength of the

flow. By eliminating the possibility of instabilities due to negative eigenvalues, we are able to more clearly

expose the issue of the resolution of the conformation tensor (in the absence of a molecular diffusion term).

The paper is organized as follows. We begin with a brief summary of the basic governing equations in

Section 2. This is followed by a detailed description of the two new formulations of the FENE-P model

in Sections 3 and 4. We show results of both numerical algorithms in Section 5 followed by conclusions in

Section 6.
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2. Governing equations

We are interested in solving the equations of motion for forced and decaying isotropic turbulence in a

periodic cube of length 2p along each dimension. Below we summarize the equations that govern a

uniform, dilute polymer solution in an incompressible solvent whose stress is described by the FENE-P

model.

2.1. Velocity field

The fluid is assumed to be an incompressible continuum, and so it satisfies a generalized form of the

Navier Stokes equations

r � u ¼ 0; ð1Þ

Du

Dt
� ou

ot
þ u � ru ¼ 
 1

q
rp þ 1

q
r � Tþ aFðx; tÞ; ð2Þ

where uðx; tÞ is the velocity vector, q is the fluid density, pðx; tÞ is the local pressure, T is the the combination

of the viscous and polymer stresses and aFðx; tÞ is an external forcing function that is used (in some sim-
ulations) to generate a stationary turbulent field. The forcing is added in spectral space to wavenumbers in

the range 06 k6
ffiffiffi
2

p
using a vector-valued, incompressible Ornstein–Ulenbeck process with a prescribed

variance and decay rate that is fixed for all of the forced simulations (see [18] for a detailed discussion of

forcing). The mass concentration of polymer is assumed to be uniform in space and time and dilute, so its

effect on the other properties of the solvent can be neglected.

Note the following about our nomenclature. First, as shown in Eq. (2), we hereafter will use D=Dt to
refer to the material (substantial) derivative. All vectors will be designated by a bold lower case letter and all

tensors will be designated by a bold upper case letter. On the occasions that we use indicial notation, we will
refer to the variable by the same letter with standard text and appropriate subscripts.

The stress tensor can be written as a linear sum of contributions from the Newtonian solvent and the

polymer as follows:

T � T½s þ T½p; ð3Þ

where T½s is the Newtonian stress from the solvent defined as

T½s ¼ 2l½0bS; ð4Þ

b � l=l½0 is the ratio of the solvent viscosity to the solution viscosity at zero shear, S � ðruþruTÞ=2 is

the rate of strain tensor and T½p is the polymer stress, discussed in greater detail below (see Section 2.2). The

parameter b is proportional to the polymer concentration; for example, if we assume the zero-stress con-
figuration of the polymer is small spheres, then at dilute concentrations the polymer viscosity scales

like l½p ¼ l/, where / is the polymer volumetric concentration—under this circumstance, ð1
 bÞ ¼
/=ð1þ /Þ � / in the dilute limit.

2.2. Constitutive model for the polymer

The FENE-P model has a number of features that make it suitable for describing a dilute solution

of polymer molecules. In particular, finite extensibility makes the viscometric response of the polymer

more agreeable with experimental observations [19]. In the FENE-P model, the polymer stress is de-

fined as
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T½p ¼ l½0ð1
 bÞ f ðrÞC
 I
sp

; ð5Þ

where C is the conformation tensor, discussed in greater detail below, r2 � TrðCÞ is the square of the mean

separation between the beads, I is the identity tensor, and sp is the Zimm relaxation time of the polymer.

The function f ðrÞ is the so-called Peterlin function defined as

f ðrÞ ¼ L2 
 3

L2 
 r2
; ð6Þ

where L is the maximum extension of the polymer. This function gives rise to a nonlinear spring force that

diverges as r ! L, ensuring the spring cannot extend beyond L. At this stage, the polymer stress is expressed

entirely in terms of the conformation tensor, C, which satisfies

DC

Dt
¼ C � ruþruT � C
 f ðrÞC
 I

sp
: ð7Þ

2.3. Properties of the conformation tensor

The conformation tensor, C, is a measure of the second-order moment of the end-to-end distance vector

of the polymer dumbbell. It can be written as [20]

Cij � hrirji; ð8Þ

where the vector r is the separation vector between the two beads of the dumbbell. From the definition, it

follows that the conformation tensor is a symmetric positive definite (SPD) matrix. 1 Hulsen [21] proved

that during exact time evolution the conformation tensor must remain positive definite if it were initially.

However, cumulative numerical errors that arise from virtually all initial value problem algorithms can give
rise to negative eigenvalues. The presence of negative eigenvalues causes the unbounded growth of Had-

amard instabilities that quickly overwhelm the calculation [7].

Another important property of the conformation tensor is that the trace, which represents the square

of the separation distance, must always be less than the square of the maximum extension, i.e., r2 6L2.

The model guarantees this property through the force term, which diverges in strength as this limit is

approached. Hence for flows of arbitrary strength, the restoring force is always sufficient to maintain

this constraint. However, numerical errors in the evaluation of Tr(C) can lead to violations of this

constraint. Extension past L2 causes the force to change sign, resulting in the rapid divergence of the
calculation.

2.4. Parameters

The addition of the polymer stress to the momentum balance introduces several new parameters. Here,

we summarize all of the dimensionless parameters required to completely specify an isotropic simulation.

Recall that for isotropic, Newtonian turbulence, the fluid motion is characterized by the Reynolds

number; here we define an analogous Reynolds number based on the solution viscosity and the Taylor

microscale

1 A symmetric matrix A is said to be SPD if yT � A � y > 0 for arbitrary y. As the conformation tensor is a variance–covariance matrix,

the Cauchy–Schwartz inequality guarantees that it is non-negative definite. Moreover, the additional constraint hririi > 0 makes the

conformation tensor a SPD.
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Re �
ffiffiffiffiffi
15

p U 02ffiffiffiffiffiffiffiffi
m½0�

p ; ð9Þ

where U 0 is the turbulence intensity, � is the rate of dissipation of turbulence, and m½0 � l½0=q is the solution
kinematic viscosity at zero shear. In addition, we have the parameter b, which represents the polymer

concentration. The polymer maximum extension L is a dimensionless parameter normalized by the equi-

librium extension. Finally, the polymer relaxation time can be used to define a non-dimensional Weiss-

enberg number

We � sp
sg

¼ spffiffiffiffiffiffiffiffiffiffi
m½0=�

p ; ð10Þ

where sg is the Kolmogorov time scale associated with the smallest eddies. Weissenberg numbers that are

significant as compared to unity are required in order to see an appreciable effect of the polymer.

3. Continuous eigendecomposition

A symmetric, positive-definite matrix such as C can be expressed in terms of its eigenvalues and ei-

genvectors as follows:

C ¼ UKUT; ð11Þ

where K is a diagonal matrix made up of the three eigenvalues of C, k1, k2 and k3, U ¼ ½u1; u2; u3 is a matrix

whose columns are the unit eigenvectors of C, u1, u2 and u3 and U
T is the transpose of U. Note that since the

eigenvectors of C are orthogonal, we immediately obtain UUT ¼ I. By updating the matrices K and U and

constructing C using Eq. (11), we guarantee positive definiteness of the matrix C, so long as the individual

eigenvalues remain greater than zero. This requirement can be more easily enforced by the numerical al-
gorithm.

3.1. Evolution equations for U and K

To take advantage of Eq. (11), we must derive evolution equations for UðtÞ and KðtÞ. We begin by

rewriting the equation for C as

DC

Dt
¼ CSþ SCþ CR
 RC
 f ðrÞC
 I

sp
;

in terms of the rate of strain and rate of rotation tensors, defined, respectively, as:

S � ru
�

þruT
�
=2;

R � ru
�


ruT
�
=2;

where S is a symmetric tensor and R is skew symmetric (antisymmetric). From the orthogonality properties

of U we can say K ¼ UTCU. Differentiating using the chain rule yields

DK
Dt

¼ DUT

Dt
CUþUT DC

Dt
UþUTC

DU

Dt

¼ DUT

Dt
UK þUT CS

�
þ SCþ CR
 RC
 f ðrÞC
 I

sp

�
Uþ KUT DU

Dt
:
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Next we define

H � UT DU

Dt
; ð12Þ

and note that after integrating by parts we have

H ¼ DUTU

Dt

DUT

Dt
U ¼ 
DUT

Dt
U ¼ 
HT;

which implies that H is skew symmetric. Substituting this above and eliminating C yields

DK
Dt

¼ 
HK þ KðBþDÞ þ ðB
DÞK 
 f ðrÞK 
 I
sp

þ KH; ð13Þ

where

B � UTSU; ð14Þ

D � UTRU: ð15Þ

The diagonal elements of the terms involving H and R are all identically zero, and therefore cannot

contribute to the time evolution of KðtÞ. We therefore can split Eq. (13) into two simpler expressions
representing the diagonal and off-diagonal terms, respectively:

Dki

Dt
¼ 2Biiki 


f ðrÞki 
 1

sp
; i ¼ j;

0 ¼ ½KðBþDþHÞ þ ðB
D
HÞKij; i 6¼ j:

8><
>: ð16Þ

The top expression in Eq. (16) is the evolution equation for the eigenvalues of C; the lower part can be
used to solve for the tensor H as shown below

Hij ¼
½KðBþDÞ þ ðB
DÞKij

kj 
 ki
; i 6¼ j;

0; i ¼ j:

8<
: ð17Þ

Finally, we need to derive an evolution equation for the tensor U. To update U we can take advantage of

definition of H and the fact that U is an orthogonal matrix to obtain

DU

Dt
¼ UH: ð18Þ

3.2. Numerical algorithm

As noted in [14,15], advection of the conformation tensor is complicated by the lack of a diffusion term.

As will be shown, this leads to the formation of steep gradients in C (and therefore T½p), as would occur for

a passive scalar for example [22]. A pseudospectral algorithm has difficulties dealing with the steep gra-
dients [14,15]; moreover, the standard dealiasing step [23,24], which involves zeroing a portion of the

wavenumber space, will corrupt the eigenvalues. We therefore use a compact finite difference scheme to

update U and K [25]. The velocity is updated using a standard pseudospectral code [26]; details can be

found elsewhere [27].
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The algorithm for updating the conformation tensor and fluid velocity proceeds as follows. Given Un,

Kn, un, where the subscript n indicates the iteration number

1. Update Unþ1

2. Update Knþ1

3. Construct

• Cnþ1 � Unþ1Knþ1U
T
nþ1

• T
½p
nþ1 from Eq. (5)

• Tnþ1 � T½s
nþ1 þ T

½p
nþ1

4. Update unþ1

The details for accomplishing the first two steps is given below.

3.2.1. Numerical update of U

The convective equation for U is

oU

ot
þ u � rU ¼ UH; ð19Þ

which can be rewritten as follows:

oU

ot
¼ UH; ð20Þ

where

H � H
UT½u � rU:

Note that by definition UT½u � rU is skew symmetric (and therefore so is H). It is critical that the

numerical update of U maintain its orthogonality.

The traditional explicit Euler update of Eq. (20) takes the form

Unþ1 ¼ Un½Iþ hHn þOðh2Þ ¼ U0½Iþ hH0½Iþ hH1 � � � ½Iþ hHn þOðh2Þ

¼ U0 I

"
þ h

Xn

i¼0

Hi

#
þOðh2Þ; ð21Þ

where h is the time step. However, this update does not guarantee that Unþ1 remains an orthogonal matrix.

A symplectic integrator guarantees orthogonality. For example, a modified version of the Euler scheme

based on the Cayley expansion [28] can be written as shown below

Unþ1 ¼ U0 I

"

 h
2

Xn

i¼0

Hi

#
1

I

"
þ h
2

Xn

i¼0

Hi

#
þOðh2Þ: ð22Þ

Eq. (22) is equivalent to Eq. (21) to Oðh2Þ; however, its form guarantees that Unþ1 remains orthogonal.
Note that we typically set U0 ¼ I, eliminating that pre-factor. Additionally, we use an analytical expression

for the product shown in Eq. (22). For a skew symmetric matrix A

A �
0 
c b

c 0 
a


b a 0

2
64

3
75;
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ðI
 AÞ
1ðIþ AÞ is given by

1

ð1þ a2 þ b2 þ c2Þ

1þ a2 
 b2 
 c2 2ðabþ cÞ 2ðac
 bÞ
2ðab
 cÞ 1
 a2 þ b2 
 c2 2ðbcþ aÞ
2ðacþ bÞ 2ðbc
 aÞ 1
 a2 
 b2 þ c2

2
4

3
5:

3.2.2. Numerical update of K

The upper expression in Eq. (16) shows the governing equation for the eigenvalues. An important

consideration in designing a numerical update for this equation is that the eigenvalues must satisfy the

constraint
P3

i¼0 ki ¼ r2 6 L2: To accomplish this, we treat the nonlinear elastic restoring force implicitly,

while the rest of the equation is evaluated explicitly for numerical convenience. Using an integrating factor

for the linear terms, the resulting semi-implicit Euler step takes the following form:

k1½nþ1 ¼ k1½ne
2hB11 
 hun � rk1½n þ

h
sp


 hf ðrnþ1Þk1½nþ1

sp
; ð23Þ

k2½nþ1 ¼ k2½ne
2hB22 
 hun � rk2½n þ

h
sp


 hf ðrnþ1Þk2½nþ1

sp
; ð24Þ

k3½nþ1 ¼ k3½ne
2hB33 
 hun � rk3½n þ

h
sp


 hf ðrnþ1Þk3½nþ1

sp
; ð25Þ

where k1½nþ1 � k1ðtnþ1Þ. Next we sum Eqs. (23)–(25) to obtain

r2nþ1 ¼ k1½ne
2hB11 þ k2½ne

2hB22 þ k3½ne
2hB33 
 hun � rr2n þ

3h
sp



hf ðrnþ1Þr2nþ1

sp
; ð26Þ

which can be written in the form

r2nþ1 ¼ c 

ar2nþ1

L2 
 r2nþ1

; ð27Þ

where

a � hðL2 
 3Þ
sp

;

c � k1½ne
2hB11 þ k2½ne

2hB22 þ k3½ne
2hB33 
 hun � rr2n þ

3h
sp

:

Eq. (27) is quadratic in r2nþ1 with the following (physical) solution:

r2nþ1 ¼
1

2
c

�
þ a þ L2 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc þ a þ L2Þ2 
 4cL2

q �
: ð28Þ

Note that for arbitrarily strong flows (i.e., c ! 1) 06 r2nþ1 6 L2 is guaranteed. Once computed, r2nþ1 can

be substituted into Eqs. (23)–(25) and the eigenvalues k1½nþ1, k2½nþ1 and k3½nþ1 can be updated. Occasionally

the numerical update of ki½nþ1 go negative. To avoid Hadamard instabilities, we set those eigenvalues to

zero and re-normalize the remaining eigenvalues so that the total length is still given by Eq. (28). We can
reduce the number of occurrences of negative eigenvalues by reducing the time step h; however, compar-
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isons of calculations with smaller time steps show little difference with the results we obtain by this algo-

rithm using the standard Newtonian time step.

3.3. Memory requirements

It is important to consider the memory requirements for this update. Directly integrating the equation

for C requires storage of six independent components of the symmetric tensor. Based on a naive count of

variables, it would appear that the eigendecomposition update requires twice as much memory, since three

eigenvalues and the nine components of the tensor U must be stored. However rather than store U, we store

globally the skew symmetric tensor HðUÞ, which has only three independent components, and reconstruct

U (locally) from Eq. (22). Combining these three components with the three eigenvalues yields a total of six

global variables, making the memory requirements for the continuous eigendecomposition the same as for
direct integration.

4. Cholesky decomposition

An alternative approach to an eigendecomposition of a SPD is a Cholesky decomposition. In this case,

we first address the finite extensibility problem by defining a new tensor J as follows:

J � f ðrÞC: ð29Þ

Notice that by definition J is also SPD since f ðrÞ is a positive quantity for all values of r. Taking the

trace of both sides of Eq. (29) and rearranging to solve for r2 in terms of j2 � TrðJÞ yields

r2 ¼ j2L2

L2 þ j2 
 3
: ð30Þ

Notice that 06 r2 6 L2 for 06 j2 61. Consequently, the finite-extensibility constraint is satisfied as long
as we ensure j2 > 0.

From the constitutive equation for C, it is possible to derive the following exact equation for J:

DJ

Dt
¼ J � ruþruT � J
 pðJ
 IÞ þ qJ; ð31Þ

where

p � L2 
 3þ j2

spL2
;

q � k
L2 
 3

�

 ðL2 
 3þ j2Þðj
 3Þ

spL2ðL2 
 3Þ

�
; ð32Þ

k � Tr½J � ruþruT � J:

The remaining numerical problem is how to maintain the positive definiteness of the tensor J. The
Cholesky decomposition of J can be expressed as follows:

J ¼ L � LT; ð33Þ

where L is a lower triangular matrix of the form

L �
‘11 0 0

‘21 ‘22 0

‘31 ‘32 ‘33

2
4

3
5: ð34Þ
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If one derives a transport equation for the tensor L, and then calculates J using Eq. (33), the eigenvalues

of J will remain positive definite by construction.

4.1. Evolution equations for L

Substituting Eq. (34) into Eq. (33) we find

J �
‘211 ‘11‘21 ‘11‘31

‘11‘21 ‘221 þ ‘222 ‘21‘31 þ ‘22‘32
‘11‘31 ‘21‘31 þ ‘22‘32 ‘231 þ ‘232 þ ‘233

2
4

3
5: ð35Þ

Notice the tensor is symmetric and the diagonal terms are all positive definite. The equations for the six

non-zero elements of the L matrix can be derived from the equations for the elements of J tensor se-

quentially, starting with ‘11 ¼
ffiffiffiffiffiffi
J11

p
and proceeding to ‘21, ‘31, ‘22, ‘32 and finally ‘33. The result is:

D‘11
Dt

¼ C11‘11 þ C21‘21 þ C31‘31 þ
1

2

p
‘11

�
þ ðq
 pÞ‘11

�
; ð36Þ

D‘21
Dt

¼ C12‘11 þ C22‘21 þ C32‘31 þ C21

‘222
‘11

þ C31

‘32‘22
‘11

þ 1

2

�

 p‘21 


p‘21
‘211

þ q‘21

�
; ð37Þ

D‘31
Dt

¼ C13‘11 þ C23‘21 þ C33‘31 þ C21

‘22‘32
‘11

þ C31

‘232 þ ‘233
‘11

þ 1

2

�

 p‘31 


p‘31
‘211

þ q‘31

�
; ð38Þ

D‘22
Dt

¼ C22‘22 þ C32‘32 
 C21

‘21‘22
‘11


 C31

‘32‘21
‘11

þ 1

2

�

 p‘22 þ

p
‘22

þ p‘221
‘211‘22

þ q‘22

�
; ð39Þ

D‘32
Dt

¼ C23‘22 þ C33‘32 
 C21

‘22‘31
‘11


 C31

‘31‘32
‘11

þ C32

‘233
‘22


 C31

‘21‘
2
33

‘11‘22

þ 1

2

�

 p‘32 


p‘32
‘211


 p‘221‘32
‘211‘

2
22

þ p‘21‘31
‘211‘22

þ q‘32

�
; ð40Þ

D‘33
Dt

¼ C33‘33 
 C31

‘31‘33
‘11


 C32

‘32‘33
‘22

þ C31

‘21‘32‘33
‘11‘22


 p‘21‘31‘32
‘211‘22‘33

þ 1

2

�

 p‘33 þ

p
‘33

þ p‘231
‘211‘33

þ p‘232
‘222‘33

þ p‘221‘
2
32

‘211‘
2
22‘33

þ q‘33

�
; ð41Þ

J will remain SPD as along as the diagonal elements of L are greater than zero.

4.2. Numerical update of L

An important consideration for the numerical algorithm used to update the diagonal terms is that they

must remain greater than zero. There are a number of numerical approaches to solving for positive definite

variables. One that we have used successfully in earlier work is based on a logarithmic transformation as

follows [29]:

~‘‘11 � lnð‘11Þ: ð42Þ
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The definitions for ~‘‘22 and ~‘‘33 follow by analogy. Computing ‘11 numerically by exponentiating ~‘‘11 yields
a positive definite result. The equations for ~‘‘11, ~‘‘22 and ~‘‘33 are found by dividing Eqs. (36), (39) and (41) by

‘11, ‘22 and ‘33, respectively. The result is

D~‘‘11
Dt

¼ C11 þ ðC21‘21 þ C31‘31Þ expð
~‘‘11Þ þ
1

2
p expð

h

 2~‘‘11Þ þ q
 p

i
; ð43Þ

D~‘‘22
Dt

¼ C22 þ C32‘32 expð
~‘‘22Þ 
 C21‘21 expð
~‘‘11Þ 
 C31‘32‘21 expð
~‘‘11 
 ~‘‘22Þ

þ 1

2
p expð

h

 2~‘‘22Þ þ p‘221 exp½ 
 2ð~‘‘11 þ ~‘‘22Þ þ q
 p

i
; ð44Þ

D~‘‘33
Dt

¼ C33 
 C31‘31 expð
~‘‘11Þ 
 C32‘32 expð
~‘‘22Þ þ C31‘21‘32 expð
~‘‘11 
 ~‘‘22Þ


 p‘21‘31‘32 expð
2~‘‘11 
 ~‘‘22 
 2~‘‘33Þ þ
1

2
p expð

h

 2~‘‘33Þ þ p‘231 exp½ 
 2ð~‘‘11 þ ~‘‘33Þ

þ p‘232 exp½ 
 2ð~‘‘22 þ ~‘‘33Þ þ p‘221‘
2
32 exp½ 
 2ð~‘‘11 þ ~‘‘22 þ ~‘‘33Þ þ q
 p

i
: ð45Þ

The numerical algorithm begins by updating ~‘‘11½nþ1, ~‘‘22½nþ1, ~‘‘33½nþ1 and obtains ‘11½nþ1, ‘22½nþ1 and ‘33½nþ1
by exponentiation. We used a standard discretization of the equations for ~‘‘11, ~‘‘22, ~‘‘33, based on a compact

finite difference formulation for spatial derivatives and second-order Runge–Kutta for the integration in

time. The functions ‘21½nþ1, ‘31½nþ1 and ‘32½nþ1 are then found using Eqs. (37), (38) and (40), respectively.

Positivity of the diagonal terms is guaranteed by the logarithmic transformation; positive definiteness of J is
guaranteed by construction. We again used a compact finite difference algorithm (instead of a pseudo-

spectral algorithm) to avoid problems resulting from the dealiasing step. The velocity was updated using a

standard pseudospectral algorithm.

4.3. Memory requirements

The memory requirements for this update are essentially the same as for the continuous eigendecom-

position. The six global variables that must be stored consist of ~‘‘11, ~‘‘22, ~‘‘33, ‘12, ‘13 and ‘23. The stress tensor
T can be constructed locally at each grid point without additional storage.

5. Results and discussion

Direct numerical simulations of isotropic, non-Newtonian, turbulent flow were performed on a 643

lattice using the algorithms described in Sections 3 and 4. In addition, a limited number of numerical

simulations of Eq. (7) were done directly, with the addition of a stress diffusivity of the form jr2C on the

right-hand side. The additional term introduced a new parameter j, the stress diffusivity, which we express

in terms of a dimensionless Schmidt number defined as

Sc � m½0

j
: ð46Þ

The standard FENE-P model corresponds to Sc ¼ 1, and typical values used in the literature are

Sc � 1:0 [11,12]. The results of all of the simulations are presented below.
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5.1. Comparison of numerical algorithms

We integrated the FENE-P model using the continuous eigendecomposition, the Cholesky decompo-

sition and directly integrated Eq. (7) with Sc ¼ 1 and Sc ¼ 1. In all cases we set We ¼ 10 and L ¼ 100, and

to facilitate the comparison, we set b ¼ 1 (i.e., uncoupled) so that we did not have to consider instabilities

that might arise from negative eigenvalues. A comparison of the probability density function (PDF) of the

polymer stretch r2=L2 is given in Fig. 1. There are two problems with the direct integration that are im-

mediately apparent. First, a significant fraction of the points have negative r2, which is physically unrealistic

and if the calculation were fully coupled would lead to numerical instabilities in the velocity field. Note that

decreasing the Schmidt number to unity reduces the frequency of occurrence of negative values, but does
not eliminate them entirely. The second problem is that the distribution of r2 on the positive side is greatly

attenuated as compared to the continuous eigendecomposition or Cholesky decomposition. In the case of

Sc ¼ 1, this is due in part to the smoothing of the high frequency eddies by the stress diffusivity. The at-

tenuation at Sc ¼ 1 is most likely due to the moderately large population of negative r2 which through

transport by convection is limiting the growth of the positive values.

In all cases, the continuous eigendecomposition and the Cholesky decomposition maintain 06 r2 6L2.

Notice that the resulting distributions are significantly broader than the results from direct integration. It

appears as though the two decompositions eliminate the spurious negative values of r2 without excessive
filtering of the dynamics. However, the two methods do not yield identical PDFs. We believe this is due to

the numerical difference in the way convection is treated by the two methods. As already noted, convection

in this simulation is problematic because of the lack of a molecular mechanism to cut off the unbounded

growth of gradients of C. As a result, the steep gradients that do arise are presumably truncated by nu-

merical diffusion, which is both grid and method dependent. We observe the discrepancy between the two

decompositions only after the steep gradients in C are generated and so the underlying cause is undoubtedly

Fig. 1. (a) Comparison of the probability density function (PDF) of the trace of C normalized by L2 for the continuous eigende-

composition method, the Cholesky method, and the direct integration of Eq. (7) with the tensor diffusivity term at the indicated values

of Schmidt number. (b) Blow up of the behavior at small r2=L2. The parameters for all of the simulations are the same as for Run 2 in

Table 1 except b ¼ 1 (i.e., uncoupled only).
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connected to the loss of resolution of the convection terms at long times. Resolution is an important issue

that we discuss at greater length in Section 5.4.

5.2. Forced simulations

A series of simulations with large scale forcing (see Eq. (2)) were performed using the continuous eig-

endecomposition method. Table 1 has a summary of the parameters used in the simulations. We are only

showing results for one method because there was general agreement between the two decompositions and

the continuous eigendecomposition is the faster of the two. Furthermore, the continuous eigendecompo-

sition required no change in the time step, whereas the Cholesky decomposition required a reduction of the

time step by a factor of 5. In each simulation, the polymer was initially unstretched, corresponding to

C ¼ I; however, the simulations were carried out for sufficient time for the polymer stretching to reach
steady (stationary) state (approximately six large eddy turnover times) before statistics were calculated. At

that point we began statistically sampling at one large eddy turnover time intervals for 20 samples. Av-

erages were computed from these 20 samples.

The effect of Weissenberg number can be seen in Runs 0–3. The turbulence intensities, summarized in the

final column of Table 1, are only weakly affected by the polymer until the very highest value (We ¼ 100),

where the intensity decreased by only about 3%. Some of the forcing energy is diverted to maintaining the

population of stretched polymer molecules, which slightly reduces the energy available for the turbulent

fluctuations. Fig. 2(a) shows the PDF of the trace of the conformation tensor normalized by L2. We see that
the peak in the curve shifts towards the right with increasing Weissenberg number, corresponding to an

increase in the degree of stretching. Because the stretching (in this coordinate) cannot exceed unity, we also

see a commensurate decrease in the width of the distribution with increasing Weissenberg number leading

to a ‘‘piling up’’ of the distribution near unity. At high Weissenberg numbers, a significant fraction of the

polymer is being stretched nearly to full extension.

The effect of the maximum extension L on the turbulence can be seen by comparing Runs 0, 1, 4 and 5 in

Table 1. We see a similar trend as was seen with the Weissenberg number study; namely that the effect of the

polymer is strongest at the highest value of L. Indeed, there is no effect until L ¼ 1000, but the effect at this
last value is relatively strong, causing the turbulence intensity to drop by 10%. We note that effective drag

reducing polymers can have values of L that range from several tens to several hundreds. The effect of L on

the PDF of r2=L2 is shown in Fig. 2(b). Here the trend is contrary to the Weissenberg number; that is,

increases in L cause the polymer to stretch to a smaller fraction of its maximum extension. We believe this is

caused by the increase in mechanical energy required to stretch polymers with larger L to the same degree

Table 1

Parameter values used in the forced numerical simulations

Run b L2 We ð1
 bÞL2 U 0

0� 1.00 – – 0 0.833

1 0.95 104 1 500 0.833

2� 0.95 104 10 500 0.833

3� 0.95 104 100 500 0.805

4 0.95 100 10 5 0.833

5� 0.95 106 10 5� 104 0.749

6 0.90 50 10 5 0.833

7 0.90 5� 103 10 500 0.836

8 0.90 5� 105 10 5� 104 0.745

The column labeled U 0 shows the steady (stationary) state turbulence intensity. Runs with asterisks indicate conditions that

decaying studies were also done.
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(the mechanical energy is proportional to L2). The effect of longer polymers can therefore be felt even at

modest degrees of stretch.

Finally, we consider the effect of b on the turbulence in Runs 0, 2, and 4–8. Note that instead of varying

b alone, we varied b and L simultaneously so as to keep fixed ð1
 bÞL2. The idea is based on the argument
by Dimitropoulos et al. [10] that the important polymer parameter is the maximum extensional viscosity,

which is proportional to ð1
 bÞL2. The results shown in Fig. 3 support this argument. In the cases we

considered, there is consistent agreement between the two runs at different values of b, both in terms of the

kinetic energy of the turbulence (see Table 1) and the PDF of the polymer extension. Indeed, the agreement

is so good that it suggests a new scaling of the conformation tensor of the form

C0 � C=L2: ð47Þ

The equation for C0 would then take the form

DC0

Dt
¼ C0 � ruþruT � C0 
 ½f ðr0ÞC0 
 I=L2

sp
; ð48Þ

where r0
2 � TrðC0Þ and

f ðr0Þ � 1
 3=L2

1
 r02
: ð49Þ

The polymer stress is then given by

T½p ¼ gð1
 bÞL2 ½f ðr0ÞC0 
 I=L2
sp|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

UðWeÞ

; ð50Þ

Fig. 2. PDF of r2=L2 for (a) the three values of Weissenberg number (see Runs 0–3 in Table 1) and (b) three values of maximum

extension (see Runs 0, 1, 4 and 5 in Table 1).
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where UðWeÞ is the function above the bracket. Notice that for relatively long chained polymers (i.e.,
L � 3), the effect of L2 on the evolution of C0 or UðWeÞ is relatively weak. This statement is not strictly true,

since the terms proportional to L
2 are responsible for the polymer relaxing to its equilibrium state in the

absence of flow. However, significant polymer stresses result from polymers far from equilibrium, in which

these terms contribute negligibly; thus, the important contributions of C0 to the fluid mechanics occur when

polymers are stretched and C0 is nearly independent of L. Under this assumption, the stress is determined by

the product of a single lumped parameter ð1
 bÞL2 with the function UðWeÞ.
This has important implications for parameterizing drag reduction. It has long been known that longer-

chain polymers can achieve drag reduction at lower concentrations [30]; however, the precise relationship
between the two parameters was not known. According to the FENE-P model, the two parameters enter

into the problem as a single combined variable, thus reducing the parameter space by one. It�s important

to see if such a reduction can be confirmed by experimental measurements, particularly across polymer

types.

The decomposition also suggests a new way of thinking of the onset phenomenon. Empirically we know

that below a critical Weissenberg number, polymers remain coiled and their effect on the flow is negligible

(corresponding to UðWeÞ � 0). According to our reformulation of the FENE-P model, this is independent

of b and L. In channel flow, the Weissenberg number increases with increasing Reynolds number until the
threshold We� is reached, whereupon polymer molecules undergo the coil–stretch transition. At this point,

dictated only by We, we expect finite values of UðWeÞ. Further increases in the Reynolds number (and We)
will cause UðWeÞ to increase monotonically, indefinitely. The degree of drag reduction above criticality is

then determined by the product of UðWeÞ with the lumped parameter ð1
 bÞL2. Thus, onset is defined

entirely in terms of a critical Weissenberg number We�; there is no critical value for ð1
 bÞL2. However,

practical considerations may limit the range of ð1
 bÞL2 for which drag reduction can be observed under

typical experimental conditions.

Notice that the FENE-P model contains no critical polymer length parameter either. Deformation of the
polymer in the model is based entirely on a local linear flow assumption and so the polymer length, relative

Fig. 3. PDF of the trace of C for the three values of Weissenberg number. The parameters correspond to Runs 0, 2 and 4–8 in Table 1.
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to the fluid mechanical length scales, is a small parameter that does not enter into the model. This implies

there can be no critical length. (This is consistent with the most widely held view in the literature, see [31] for

some discussion.) (see Fig. 3).

5.3. Decaying simulations

Decaying turbulence studies were carried out after forcing the system to a stationary state. Conse-

quently, the polymer was pre-stretched, as would happen for example in a grid-generated system. Fig. 4

shows the turbulence intensity and mean square polymer extension as a function of time for a Newtonian

fluid and for Weissenberg numbers of 10 and 100. We chose the two highest values because these yielded the

largest effect. In both cases, we observe a form of �drag reduction� at early times in which the polymer

system decays more slowly than the Newtonian system. At later times it appears that the Newtonian and
non-Newtonian systems both decay like a power law t
a, where the values of a are approximately the same.

The early-time behavior is qualitatively similar to experimental observations by van Doorn et al. [32].

However, at longer times their measurements showed continued drag reduction, suggesting a self-similarity

between the decay of energy and the decay of the polymer stretching. In our simulations, we see no such

thing. In fact, this is not surprising with the FENE-P model. As the turbulent energy decays, the contri-

bution of the polymer stresses will eventually become smaller than the Newtonian solvent stress, at which

point the system reverts back to a Newtonian fluid. This is apparent in Fig. 4(b), which shows that r2

approaches 3 (i.e., the equilibrium value) at long times.
Fig. 5 shows the effect of the polymer maximum extension, L, on the rate of decay of turbulent energy.

Here we see the degree to which the polymer retards the rate of decay of turbulence increases with in-

creasing L; however, at long times we again see that the decay rate of the polymer systems approach the

Newtonian rate of decay. The explanation is essentially the same.

Fig. 4. (a) Normalized turbulence intensity as a function of time (normalized by the large eddy turnover time) for Runs 2 and 3,

corresponding to the indicated Weissenberg numbers. (b) Equivalent plot of the normalized average square length of the polymer,

r02 � r2=L2, as a function of time.
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5.4. Energy spectrum and grid resolution

Fig. 6 shows the Newtonian energy spectrum and three spectra corresponding to the We study and the
L study. Notice in general the polymer spectra are slightly above the Newtonian spectrum at small

wavenumbers, but are attenuated at intermediate wavenumbers. This low-wavenumber �pivot� of the

Fig. 5. (a) Normalized turbulence intensity as a function of time for Runs 2 and 5, corresponding to the indicated polymer maximum

extensions. (b) Equivalent plot of the normalized average square length of the polymer, r02 � r2=L2, as a function of time.

Fig. 6. Energy spectrum as a function of the (a) Weissenberg number (L ¼ 100) and (b) maximum extension (We ¼ 10).
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spectrum is consistent with experimental observations in the literature [32,33]. We speculate that the at-

tenuation at intermediate wavenumbers is due to polymer stretching, which consumes some of the me-

chanical energy.

What is less clear is whether the rise in the energy spectrum at high wavenumbers is real or an artifact of

the model or numerical method. For example, this feature does not seem to be supported by experimental

measurements. Moreover, numerical tests suggest that the source of this energy is the feedback from the

large stress gradients that are generated by turbulent convection. This again raises the important question

of numerical resolution of the conformation tensor C on a finite grid, in the absence of a stress diffusivity.
Dubief and Lele [15] discuss the analogy between the convection of C in the FENE-P model and ad-

vection of a passive scalar in the limit of vanishingly small diffusivity (i.e., Sc ! 1). This is the limit

considered by Batchelor [34], in which he derived the k
1 spectrum for k > kg � ð�=m3Þ1=4. The spectrum

arises from stretching and folding of the scalar down to finer and finer scales by Kolmogorov-scale eddies.

This process is ultimately cut off by the molecular diffusivity if it exists. If we assume a similar stretching

and folding process for C in the FENE-P model, then gradients of C (and correspondingly T½p) will grow

without bound.

This is unappealing on a number of levels beyond the obvious numerical resolution problems we noted
earlier (see Fig. 1 and related discussion). For example, shocks in the C tensor will generate commensu-

rately large gradients in the velocity field (indeed, this may be the cause of the tail in the energy spectrum we

see in Fig. 6 at high wavenumbers).

Stress diffusivity. El-Kareh and Leal [35] recognized the potential for shocks to form in C due to its

hyperbolic form. They argued that the standard FENE-P model is inconsistent in its treatment of relative

motion of beads due to Brownian motion and the absolute motion of the entire molecule along its tra-

jectory. Including the effect of Brownian motion of the whole molecule introduces a stress diffusivity into

the equation for C, changing the character of the equation from hyperbolic to parabolic. From kinetic
theory considerations, the estimate for the Schmidt number for a polymer molecule in a water-like solvent is

in the range 105–106 [36]. While technically this eliminates the possibility of a discontinuity in C, it still

allows for very large gradients to form. 2

Sureshkumar and Beris [7] introduced a similar stress diffusivity into their numerical simulation of

turbulent channel flow, but used a substantially lower value of the Schmidt number (Sc ¼ 0:8). Their
motivation was to suppress the formation of negative eigenvalues, which lead to the unbounded growth of

instabilities. However, in light of the success we have had in eliminating negative eigenvalues through the

Cholesky- and continuous eigendecompositions, it appears as though the more important role of the stress
diffusivity may be to smooth out the shocks in C. Indeed, the value of Schmidt number they chose is more

typical of numerical simulations of passive scalars [37], which, due to grid resolution requirements, rarely

exceed a value of about 10 [38].

This raises two important questions. First, are the sub-Kolmogorov scale dynamics implied by Sc � 1

real? This is not at all certain, despite the apparent legitimacy of the scaling estimate Sc � 105 for Brownian

polymer molecules. Experimental observations of the velocity spectrum do not show any evidence of the

sub-Kolmogorov dynamics we observed in our simulations—in fact, they often show strong attenuation at

high wavenumbers [32,33]. Furthermore, the simulations of Beris and co-workers are in apparent agree-
ment with experimental measurements, despite the small Schmidt number they use. It seems at least

plausible that some other mechanism is responsible for cutting off the steep gradients in C. We can think of

two possibilities. First, the finite length of the stretched polymer chains may cause a breakdown of the local

linear flow assumption used to derive the stretching terms in the FENE-P model. The Kolmogorov length

2 The magnitude of the scalar gradient is proportional to the integral of k2 times the spectrum, which scales like Sc1=2 for Sc � 1,

according to the Batchelor theory [34].
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scale for a moderately high Reynolds number flow is of the order of 10 lm; given the typical radius of

gyration of a polymer molecule in a good solvent (�50 nm), the linear flow assumption seems justified.

However, the length of a stretched polymer chain can be 100 times its radius of gyration, making it the same

order of magnitude as the Kolmogorov scale. This may limit the degree of stretching as well as the mag-

nitude of gradients (in the direction of stretch). The second possibility is related to the low concentration of

polymer in typical drag reducing flows. The large gradients in C result from continuous stretching and

folding by turbulent convection, which at some point may not be sustainable due to the limited number of

molecules.
The second question is if the sub-Kolmogorov motions exist, do they have any dynamical significance? It

is possible that the sharp fronts in C are supported by high viscous stresses (velocity gradients) that are

localized at small scales (high wavenumbers) and do not influence the large energetic scales very much.

Under this circumstance, it may be justified to artificially lower the Schmidt number for numerical pur-

poses.

In the absence of answers to these two important questions, we are left to speculate as to whether the

high wavenumber behavior in Fig. 6 is real or artifact. It must be emphasized that answers should be sought

based on physical not numerical grounds; once the physics is better understood, numerical algorithms that
reproduce the known physics reliably can be developed. This is beyond the scope of the present study,

which focused on the standard FENE-P model; however, we note that the Cholesky- and continuous

eigendecompositions can be extended to include a stress diffusivity if that term is deemed necessary.

6. Conclusions

A numerical algorithm is presented for evolving the coupled FENE-P model for a dilute polymer so-
lution with the Navier Stokes equations. The polymer stress in the FENE-P model is seen to involve a

conformation tensor C, which is SPD by definition and must remain so to avoid spurious numerical in-

stabilities. The approach is to decompose the matrix in one of two ways, evolve the components forward in

time and construct the matrix from the components. In that way, the conformation tensor is guaranteed to

be positive definite by construction. The new approach avoids many of the problems observed in earlier

simulations of the equations, is robust, and expands the range of parameters that can be simulated, at least

for the case of isotropic turbulent flow. (At the moment, we cannot say how effective the new algorithm will

be for the more practical case of channel flow; we are in the process of developing a channel flow code based
on this algorithm and we hope to compare that model to published results in the near future.)

The new algorithm has been implemented into an isotropic DNS code for the purposes of testing and to

look at some physics of stirred and decaying turbulent polymer solutions. We are able to make calculations

over the ranges We6 100 and L6 1000, which are realistic limits for these parameters. Our forced simu-

lations show that the polymer expands and the turbulence is more attenuated with increasing We and L.
From energy spectra, we see that turbulent energy in the intermediate scales is reduced (presumably because

it is going into the polymer) while energy at high wavenumbers is increased by the presence of polymer. We

conjecture that the traditional energy cascade in a Newtonian fluid is bifurcated into two directions: (i) the
traditional triadic interactions leading to energy cascade; and (ii) into the polymer where energy is either re-

emitted at higher wavenumbers or dissipated into heat. The resulting net rate of energy transfer is reduced.

The decaying studies exhibited �drag reduction� in the form of a reduction in the decay rate. This resulted

from exchanges between the polymer potential energy and the turbulent kinetic energy that ultimately slows

the overall decay rate in the system. It is difficult to compare �drag reduction� in isotropic turbulence with

the earlier work on channel flows, as the latter has many complications due to the presence of the wall.

However, we can compare the scaling of the onset condition in the two flows. In pipe flow, the onset of drag

reduction is usually defined in terms of a critical Weissenberg number based on wall variables
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WeW � sp
ðl=sWÞ

;

where sW is the wall shear stress and the critical value for WeW is approximately 10 [9]. From energy

considerations, we estimate the bulk � to be

� ¼ 4sWhvi
qD

;

where hvi is the mean velocity and D is the pipe diameter. Defining a critical Weissenberg number based on

Kolmogorov variables yields the following estimate for the ratio of critical Weissenberg numbers

WeW
We

¼
ffiffiffiffiffiffiffiffi
fRe

p

2
ffiffiffi
2

p � 0:01Re3=8; ð51Þ

where f is the Fanning friction factor, Re is the bulk Reynolds number, and we assume the Blasius rela-
tionship f � 0:0791=Re1=4. Eq. (51) implies the two criteria are different; however, it is difficult to discern

which is correct with the limited range of Reynolds numbers that can be simulated. For example, the above

ratio is approximately 3 for Re ¼ 10; 000, which is numerically consistent with our DNS as well as most

channel flow simulations.

Our new algorithms address the two numerical issues raised at the beginning of this article for the case of

isotropic turbulence. However, the third important issue, namely convection of the conformation tensor, is

not directly addressed by these algorithms. Instead, we have used our results to try and clarify the problem.

The standard FENE-P model contains no diffusive process to cut off the sharp fronts that are formed in C by
turbulent convection. This appears to be a limitation of the model (as opposed to the numerical algorithm)

as we demonstrated by analogy with the passive scalar. The pathology here is even more important than for

the passive scalar, as the sharp gradients ultimately lead to large accelerations in the fluid, which may or may

not be real. Certainly if one takes this to the extreme limit (infinite resolution), the results seem inconsistent

with most experimental observations. We have shown that the problem is not related to the loss of positive

definiteness of C, as suggested in earlier publications, but is possibly related to the lack of a physical

mechanism for smoothing the sharp fronts in C. Of course, other purely elastic instabilities that exist even in

laminar flows may be causing some of the difficulties (see for example [39]). We hope these results will
stimulate further work to clarify the physical origin of the molecular diffusive term (e.g., Brownian diffusion

of polymer chains, finite length of chain, non-continuum effects) and better define its coefficient.
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